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a b s t r a c t

An alternative to the classical mixedmodel with normal random effects is to use a Dirichlet
process to model the random effects. Such models have proven useful in practice, and we
have observed a noticeable variance reduction, in the estimation of the fixed effects, when
the Dirichlet process is used instead of the normal. In this paper we formalize this notion,
and give a theoretical justification for the expected variance reduction. We show that for
almost all data vectors, the posterior variance from the Dirichlet random effects model is
smaller than that from the normal random effects model.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The popular general linear mixed model has the form

Y = Xβ + Zη+ ε, (1)

where the response Y is modeled as a linear function of the fixed effect β and the random effects η, with known design or
observation matrices X and Z. It is typical to model both ε and η with independent normal distributions. This setup can be
extended to a generalized linear mixed model by specifying a suitable link function for some categorical outcome variable,
and obviously provides a more flexible specification. Details of these models with various link functions, covering both
statistical inferences and computational methods, can be found in the recent texts byMcCulloch and Searle (2001) and Jiang
(2007).
Variations of these models were used by Burr and Doss (2005), Dorazio et al. (2008) and Gill and Casella (2009), where

the distributional assumption on η is changed to a Dirichlet process. It was typically found that the richer Dirichlet model
resulted in lower posterior variances on the fixed effects. Indeed, Gill and Casella (2009) and Kyung et al. (in press, 2009)
show some examples with striking improvement in variance estimates when moving from normal random effects to
Dirichlet random effects. This evidence is anecdotal, based on observing variance estimates from various published data
analyses. In this paper we investigate some of the underlying theory that could explain this phenomenon.

1.1. Background

Dirichlet process mixture models were introduced by Ferguson (1973), who defined the process and investigated their
basic properties. Antoniak (1974) proved that the posterior distribution is amixture of Dirichlet processes, and Blackwell and
MacQueen (1973) showed that themarginal distribution of the Dirichlet process is equal to the distribution of the nth step of
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a Polya urn process. In particular, they demonstrated that for the Dirichlet process, if a new observation is obtained, it either
has the same value of a previously drawn observations, or it has a new value drawn from a distribution G0, the basemeasure.
The frequency of new components from G0 is controlled by m, the precision parameter. Other work that characterizes the
properties of the Dirichlet process includes Korwar and Hollander (1973), who characterize the joint distribution and look
at nonparametric empirical Bayes estimation of the distribution function based on Dirichlet process priors, and Sethuraman
(1994),who shows that theDirichletmeasure is a distribution on the space of all probabilitymeasures and it gives probability
one to the subset of discrete probability measures. In terms of estimation, the results of Lo (1984) and Liu (1996) allow us
to write the likelihood function in a form suitable for estimation of parameters.
Much work has been done in developing estimation strategies, particularly those based on Markov chain Monte Carlo

(MCMC) algorithms. In our previous work (Kyung et al., in press, 2009), where we proposed a new MCMC algorithm for
a linear mixed model with a Dirichlet process random effect term, we noticed that when fitting mixed models to survey
data from a recent Scottish election, by every standard measure of fit, the generalized linear mixed model with a Dirichlet
process random effect term outperformed a simple Bayesian probit model with diffuse uniform prior distributions on the
parameters and normal random effects. This is important, since the latter model is part of the standard Bayesian toolkit,
particularly in the social sciences. When the lengths of credible intervals were compared, we found that the Dirichlet model
resulted in uniformly shorter intervals than those of a normal random effectsmodel. Thus, Kyung et al. argued that the richer
random effects model is able to remove more extraneous variability, resulting in tighter credible intervals. However, this is
an anecdotal observation, based on the results from the Scottish data analysis and a few others.

1.2. Overview

In this paper, we compare the marginal posterior distribution of the variances for the Dirichlet random effects model
to those from a normal random effects model, to theoretically verify the anecdotal observations. We are able to show that
for almost any typical data vector, the posterior variance from the Dirichlet model is smaller than that from the normal. In
Section 2 we describe the Dirichlet random effects model and the case that we consider here. Section 3 compares posterior
variances, and develops a matrix theorem that shows how the Dirichlet posterior variance is smaller that of the normal.
Finally, Section 4 has a short discussion.

2. Dirichlet random effects models

In this section we give some details about the likelihood function in a general Dirichlet random effects, model, and show
how those results help us to obtain a simpler representation of the linear Dirichlet random effects model.

2.1. A general Dirichlet random effects model

A general random effects Dirichlet model can be written

(Y1, . . . , Yn) ∼ f (y1, . . . , yn | θ, ψ1, . . . , ψn) =
∏
i

f (yi|θ, ψi) (2)

ψi ∼ DP (m, φ0), i = 1, . . . , n,

where the random variable Yi has density f (yi|θ, ψi),DP is the Dirichlet Process with base measure φ0 and concentration
parameterm. The vector θ contains all of themodel parameters. Blackwell andMacQueen (1973) proved that forψ1, . . . , ψn
iid from G ∼ DP (m, φ0), the joint distribution of ψ is a product of successive conditional distributions of the form:

ψi|ψ1, . . . , ψi−1,m ∼
m

i− 1+m
φ0(ψi)+

1
i− 1+m

i−1∑
l=1

δ(ψl = ψi) (3)

where δ denotes the Dirac delta function. Applying this formula, the results of Lo (1984, Lemma 2) and Liu (1996, Theorem
1), we can write the likelihood as

L(θ | y) =
0(m)

0(m+ n)

n∑
k=1

mk
∑
C :|C |=k

k∏
j=1

0(nj)
∫
f (y(j)|θ, ψj)φ0(ψj)dψj,

where C defines the subclusters, y(j) is the vector of yis that are in subcluster j, and ψj is the common parameter for that
subcluster. There are Sn,k different subclusters C , the Stirling Number of the Second Kind. A subcluster C is a partition of the
sample of size n into k groups, k = 1, . . . , n, and since the grouping is done nonparametrically rather than on substantive
criteria, we call these ‘‘subclusters’’ to distinguish these from substantively determined clusters that may exist in the data.
That is, it is likely that any real underlying clusters would be broken up into multiple subclusters by the nonparametric
fit since there is little penalty for over-separation of these subclusters. Thus, the subclustering process assigns different
normal parameters across groups and the same parameters within groups: cases are iid only if they are assigned to the
same subcluster.
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Each subcluster C can be associated with an n× kmatrix A defined by

A =


a1
a2
...
an


where ai is a 1 × k vector corresponding to Yi. The vector ai has all zeros except for a 1 in the position corresponding the
group towhich Yi is assigned. Note that the column sums of A are (n1, n2, . . . , nk), the number of observations in the groups,
and there are Sn,k suchmatrices. Specifically, if the subcluster C is partitioned into groups {S1, . . . , Sk}, then if i ∈ Sj,ψi = ηj
and the random effect can be rewritten as

ψ = Aη, (4)

where η = (η1, . . . , ηk) and ηj
iid
∼ φ0 for j = 1, . . . , k. We then can write the likelihood function as

L(θ | y) =
0(m)

0(m+ n)

n∑
k=1

mk
∑
A∈Ak

k∏
j=1

0(nj)
∫
f (y | θ,Aη)φ0(η)dη, (5)

whereAk is the set of all n× kmatrices A and ηj ∼ φ0, independent. Note that if the integral in (5) can be done analytically,
as will happen when using a normal base measure in model (2), we have effectively eliminated the random effects from the
likelihood, replacing them with the Amatrices, which serve to group the observations.

2.2. A linear Dirichlet random effects model

Wenow focus on the simpler case of linearmixedmodels and, for ease of comparison and tominimize the algebraic load,
we consider a special case of (1), the oneway mixed effects model where

Yij = µ+ ψi + εij,

where µ is the fixed effect (intercept) and ψi are the subject specific random effects that the ith case shares with other
cases assigned to the same subcluster. We further assume that εij ∼ N (0, σ 2) and the ψi are independent draws from
a Dirichlet process with base measure N (0, cσ 2) It then follows from the development in Section 2.1 that, conditional
on the subcluster matrix A, the vector of observations has distribution Y|A ∼ N

(
µ1+ Aη, σ 2I

)
, where ηk×1 is normally

distributed. The complete specification of the model is

Y|µ, η, σ 2,A ∼ N
(
µ1+ Aη, σ 2I

)
η|σ 2 ∼ Nn

(
0, cσ 2IK

)
(6)

µ|σ 2 ∼ N
(
0, vσ 2

)
σ 2 ∼ IG (a, b) ,

where IG is the inverted gamma distribution. By marginalizing the random effects from the joint distribution of response
and random effects, we have

Y|µ, σ 2,A ∼ N
(
µ1, σ 2

(
I+ cAA′

))
, µ|σ 2 ∼ N

(
0, vσ 2

)
, and σ 2 ∼ IG (a, b) .

The joint posterior distribution is given by

π
(
µ, σ 2|Y,A

)
∝

(
1
σ 2

) n+1
2 +a+1

exp
{
−
b
σ 2
−

1
2vσ 2

µ2 −
1
2σ 2

(y− µ1)′Σ−1 (y− µ1)
}
,

where Σ = [I − A
( 1
c I+ A′A

)−1 A′]−1 = I + cAA′. Straightforward but tedious manipulations allow us to write the joint
posterior as

π
(
µ, σ 2|Y,A

)
∝

(
1
σ 2

) n+1
2 +a+1

exp
{
−
ND
2σ 2

(µ− δD(y))2
}
exp

(
−
b
σ 2
−
1
2σ 2

y′B−1D y
)
,

where

ND =
K∑
k=1

nk
1+ cnk

+
1
v
and δD(y) =

1
ND

K∑
k=1

nk
1+ cnk

ȳk,

and BD = I+ cAA′ + v11′. This yields the full conditional distributions

µ|σ 2, Y,A ∼ N

(
δD(y),

σ 2

ND

)
σ 2|µ, Y,A ∼ IG

(
n+ 1
2
+ a, b+

ND
2
(µ− δD(y))2 +

1
2
y′B−1D y

)
,
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and by respectively integrating out µ and σ 2, we now obtain the marginal posterior distributions

π
(
σ 2|Y,A

)
∝

(
1
σ 2

) n
2+a+1

exp
(
−
b
σ 2
−
1
2σ 2

y′B−1D y
)

(7)

π (µ|Y,A) ∝
[
b+

ND
2
(µ− δD(y))2 +

1
2
y′B−1D y

]−( n+12 +a)
.

We note that the distribution of µ is a transformed Student’s t , while for σ 2 we have

σ 2|Y,A ∼ IG

(
n
2
+ a, b+

1
2
y′B−1D y

)
,

leading to straightforward simulation.
Thus, the posterior variance σ 2 in the linear Dirichlet mixed model has a mean that is proportional to y′B−1D y, and it is

this quantity that we focus on. In fact, both the posterior variance of µ and the posterior mean of σ 2 in a linear Dirichlet
mixed model have the form:

cd ×
(
b+

1
2
y′
[
I+ cAA′ + v11′

]−1 y) , (8)

where cd > 0 is a constant.

3. Comparing posterior variances

We compare the posterior variances of µ for linear mixed model with Dirichlet random effects to that with normal
random effects. We first describe an eigenvalue inequality that guarantees the Dirichlet variances are smaller, then we
prove a matrix theorem that shows when the inequality holds. We verify that the Dirichlet model satisfies the conditions of
the theorem, and indicate how the results can be generalized.

3.1. Eigenvalues

From (6), we obtain the normal random effects model as a special case by setting K = n and A = I. Thus, under the
normal model the variance has posterior distribution

σ 2|Y ∼ IG

(
n
2
+ a, b+

1
2
y′B−1N y

)
,

with BN = (1+ c)I+ v11′.
We now see if the mean of the posterior distribution of σ 2, using the Dirichlet, is smaller than the corresponding mean

for the normal model, that is, we want to show that

y′B−1N y
y′B−1D y

=
y′
[
(c + 1) I+ v11′

]−1 y
y′
[
I+ cAA′ + v11′

]−1 y ≥ 1,
which is equivalent to showing

λmin
(
B−1N BD

)
= λmin

([
(c + 1) I+ v11′

]−1 [I+ cAA′ + v11′]) ≥ 1,
where λmin(·) denotes the smallest characteristic root of a matrix. First, note that[

(c + 1) I+ v11′
]−1
= aI− bJ,

where J is an n× nmatrix of 1s and

a =
1
c + 1

b =
v

(c + 1) (c + 1+ nv)
= a

v

(c + 1+ nv)
. (9)

Thus,

B−1N BD = aI+ {(a− nb) v − b} J+ acAA′ − bcAA′J

= a(I+ cAA′)− bcJ(AA′ − I) (10)

because (a− nb) v − b = cv
(c+1)(c+1+nv) = bc.
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Nextwe describe all of the eigenvectors and eigenvalues ofB−1N BD.Without loss of generalitywe assume that theAmatrix
is arranged as

A =


1n1 0 · · · 0
0 1n2 · · · 0
...

...
...

...
0 0 · · · 1nk

 ,
and we can now classify the eigenvalues of B−1N BD into two groups, as follows:

1. There are n − k eigenvectors that correspond to contrasts within the groups. One set of these can be constructed with
pairwise differences, as the following example shows. Suppose n = 9, k = 3 and n1 = 4, n2 = 3, n3 = 2. The following
n− k = 6 vectors are eigenvectors of B−1N BD:

n1 n2 n3

(1) {(1,−1, 0, 0) (0, 0, 0) (0, 0)}
(2) {(1, 0,−1, 0) (0, 0, 0) (0, 0)}
(3) {(1, 0, 0,−1) (0, 0, 0) (0, 0)}
(4) {(0, 0, 0, 0) (1,−1, 0) (0, 0)}
(5) {(0, 0, 0, 0) (1, 0,−1) (0, 0)}
(6) {(0, 0, 0, 0) (0, 0, 0) (1,−1)}

An eigenvector, x, of this form satisfies Ax = Jx = 0, and thus all of these eigenvectors have eigenvalue equal to
a = 1/(1+ c).

2. The remaining k eigenvectors are of the form

L =


ω11n1
ω21n2
...

ωk1nk

 ,
for constants ω1, . . . , ωk satisfying

∑k
j=1 njω

2
j = 1.

So we see that if the data vector y consists solely of a contrast within one of the subclusters, the variance of the normal
model will be smaller. However, for cases other than this the variance inequality will go the other way, as the following
development shows. Direct matrix multiplication shows that for vectors of the form of Lwe have

L′B−1N BDL = a
k∑
j=1

nj(1+ cnj)ω2j − bc

[
k∑
j=1

nj(nj − 1)ωj

][
k∑
j=1

njωj

]
= L′ML,

where D(aj) is a diagonal matrix with diagonal elements (a1, . . . , ak) and

M = aD(nj[1+ cnj])− bc [n1(n1 − 1) · · · nk(nk − 1)]′ (n1 · · · nk).

Subject to the constraint
∑k
j=1 njω

2
j = 1, the minimum of this quadratic form is the smallest root of the matrix MD(1/nj).

Next, some straightforward manipulations allow us to write

MD(1/nj) = aD(1+ cnj)− bcD(nj)D(nj − 1)11′. (11)

In the next section we develop a matrix result that will characterize the eigenvalues of this matrix.

3.2. A matrix theorem

Searle (1982, page 116), shows that for a diagonal matrix Dwith nonzero diagonal elements, the determinant of D+ 11′
is given by |D+ 11′| =

(∏
di
) (
1+

∑
(1/di)

)
, which is equal to the product of the eigenvalues. The more relevant version

of this equation is |D− 11′| =
(∏
di
) (
1−

∑
(1/di)

)
. However, Searle does not give the eigenvalues of either matrix. With

some minor conditions on dj we can exhibit the eigenvalues.

Theorem 1. Let D be a k × k diagonal matrix with elements di satisfying (i) di > 1 for all i and (ii)
∑
i(di − 1)

−1 < 1. Then
the eigenvalues of the matrix D− 11′ are given by

λj = dj

(
1−

∑
i

(1/di)

)rj
, j = 1, . . . , k, where

∑
j

rj = 1. (12)
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Fig. 1. For n = {10, 7, 5, 2, 1}, a graph of the left side of (13) as a function of rj , with j = 2.

The rj s are solutions to the equations∑
i

1

di − dj

(
1−

∑
i
(1/di)

)rj = 1, j = 1, . . . , k. (13)

Moreover, λj ≥ 1 for j = 1, . . . , k.

Proof. If the λj are of the form in (12), the defining eigenvalue equation, for a fixed j, is

(
D− 11′

)
x = dj

(
1−

∑
i

(1/di)

)rj
x⇒ xi =

1

di − dj

(
1−

∑
i
(1/di)

)rj ,
which is satisfied for rj satisfying (13). Note that condition (ii) insures that

∑
i(1/di) < 1. If these equations have solutions,

these are the eigenvalues, and the determinant formula guarantees that
∑
j rj = 1. Moreover, suppose that λj < 1 for some

j. Then, for that j, we have di − dj
(
1−

∑
i(1/di)

)rj > di − 1, so the left side of (13) is less than∑i(di − 1)
−1 < 1, and

equality cannot be attained.
It only remains to show that there exist (r1, . . . , rk) that solve the equations in (13). In fact there are many solutions,

characterized by arguments similar to the following. Assume that d1 ≤ d2 ≤ · · · ≤ dk. For fixed j, the function
[1−

∑
i(1/di)]

rj increases to 1 as rj decreases to 0 and, at 0, the left side of (13) is+∞. Let r∗j satisfy dj[1−
∑
i(1/di)]

r∗j = dj−1,
then as r∗j → 1, the left side of (13) goes from+∞→ −∞, and the equation has a solution. �

As an example, Fig. 1 is a graph of the left side of (13) as a function of rj, showing the multiplicity of solutions.
The following corollary covers a more general form of the matrix, which is directly applicable to our matrix (11)

Corollary 1. Let D and H be a k× k diagonal matrices with diagonal elements di and hi satisfying (i) di > 1 and hi > 0 for all i,
and (ii)

∑
i hi(di − 1)

−1 < 1. Then the eigenvalues of the matrix D− H11′ are given by

λj = dj

(
1−

∑
i

(hi/di)

)rj
, j = 1, . . . , k, where

∑
j

rj = 1. (14)

The rj s are solutions to the equations∑
i

hi

di − dj

(
1−

∑
i
(hi/di)

)rj = 1. (15)

Moreover, λj ≥ 1 for j = 1, . . . , k.
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Proof. First note that

|D− H11′| =
(∏

di
) (
1−

∑
(hi/di)

)
, (16)

which suggests the form of the eigenvalues. The conditions on di and hi insure the solutions for the rj, and that λj > 1. �

3.3. Variance comparison

Theorem 1 and Corollary 1 characterize the eigenvalues of the matrix (11), and we now can state the variance result.

Theorem 2. Themean of the posterior distribution of the variance from the Dirichlet random effects model, given in (7), is smaller
than that of the normal random effects model for all y not containing a within subcluster contrast.

Proof. The development in Section 3.1 shows that the theorem will be proved if we show that all of the eigenvalues of the
matrix (11) are greater that or equal to one. We apply Corollary 1 with

di = a(1+ cnj) and hj = bcnj(nj − 1).

It is clear that all di are positive, and thus we only need show that
∑
i hi(di − 1)

−1 < 1. Recalling the definitions of a and b
from (9), we have for c > 0 and v > 0,∑

j

hj
dj − 1

=

∑
j

bcnj(nj − 1)
a(1+ cnj)− 1

=

∑
j

cvnj(nj − 1)
(1+ c + vn)(1+ cnj − 1− c1)

=

∑
j

vnj
(1+ c + vn)

<
∑
j

nj
n
≤ 1, (17)

insuring that all eigenvalues of MD(1/nj) are at least 1. Finally note that the minimum eigenvalue 1 is attained if some
nj = 1, which is evident from the form of the matrix (11). �

As an example, for n = 25 and k = 5, we generated all of the partitions of n into k subsets. There are 192 such sets, and
the eigenvalues are distributed as follows with the associated minimum:

minj nj Frequency λmin

1 108 1
2 54 1.0466–1.3450
3 23 1.0452–1.0506
4 6 1.0501–1.0516
5 1 1.0520.

3.4. Generalization

Herewe outline how these resultsmight be generalized beyond themodel (6), replacingµ1withXβ, whereX is a known
design matrix. This yields

Y|β, η, σ 2,A ∼ N
(
Xβ + Aη, σ 2I

)
η|σ 2 ∼ Nn

(
0, cσ 2IK

)
(18)

β|σ 2 ∼ N
(
0, vσ 2I

)
σ 2 ∼ IG (a, b) .

The matrix algebra is now more involved, making it more difficult to describe the eigenvalues of the relevant matrix.
Analogous to (10), we now have

B−1N BD = [(c + 1)I+ vXX′]−1[I+ cAA′ + vXX′]

= a

(
I− X

(
1
av

I+ X′X
)−1

X′
)
(I+ cAA′ + vXX′).

Now consider a vector w with Xw = 0, so w is not in the column space of X. Multiplication then shows that w is an
eigenvector of B−1N BD only if it is an eigenvector of a(I+cAA′). This puts us back in the case covered in Section 3.1, and either
w contains within cluster contrasts, or the eigenvalues are greater than 1. If w is in the column space of X, then w = Xt ,
and we can write w as a linear combination of the eigenvectors of X′X. Suppose, for simplicity, that t is an eigenvector of
X′Xwith eigenvalue λ. Then X′Xt = λt , X( 1av I+ X′X)−1X′Xt = vλ

c+1+vλXt , and

B−1N BDw = B−1N BDXt =
1

c + 1+ vλ

[
(1+ vλ)I+ cAA′

]
Xt,



Author's personal copy

2350 M. Kyung et al. / Statistics and Probability Letters 79 (2009) 2343–2350

and now we argue as before. For w = Xt to be an eigenvector of B−1N BD either it has a within subcluster contrast, or the
eigenvalue is greater than one.
This argument is simplified in that the general vectorw would be decomposed into a part in the column space of X, and

an orthogonal part, and the part in the column space ofXwould then be represented by a linear combination of eigenvectors.
So a full description of the eigenvalues in the general case is somewhat involved, but follows the same pattern that we see
in the simpler case.

4. Discussion

Wehave derived a sufficient condition on the data vector y to insure that the posterior variance from theDirichlet random
effects model is smaller than that from the normal random effects model. Although the condition is formally unverifiable
(since we do not observe A), in practice this is not the case. The Dirichlet posterior variance might only be bigger if the y
vector has a within-subcluster contrast, and in most cases we will not be able to find any subset of the y vector that sums to
zero. Moreover, as pointed out by the referee, under the model (6), the set of y containing a within-subcluster contrast has
measure zero, so the Dirichlet posterior variance is almost surely smaller that of the normal random effects model.
We note that our results hold for Dirichlet priors on the random effects, and not for a Mixture of Dirichlet Processes

(MDP). In the latter case the Dirichlet process is the error distribution, with possibly additional hyperparameters for the base
measure. Our model (2) is a Dirichlet Process Mixture (DPM), which has a latent variable modeled with a Dirichlet process
prior. (See Ghosal et al. (1999); Ghosal (in press) for details.)
The results here give a theoretical justification to the belief that the richer Dirichlet random effects model is able to

remove more extraneous variability, resulting in tighter credible intervals. This result has been observed in data examples,
and now we understand that we can almost always expect shorter intervals when using the Dirichlet model.
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